Semantic-Similarity-Based Schema Matching for Management of Building Energy Data

Author:

Pan Zhiyu,Pan Guanchen,Monti AntonelloORCID

Abstract

The increase in heterogeneous data in the building energy domain creates a difficult challenge for data integration. Schema matching, which maps the raw data from the building energy domain to a generic data model, is the necessary step in data integration and provides a unique representation. Only a small amount of labeled data for schema matching exists and it is time-consuming and labor-intensive to manually label data. This paper applies semantic-similarity methods to the automatic schema-mapping process by combining knowledge from natural language processing, which reduces the manual effort in heterogeneous data integration. The active-learning method is applied to solve the lack-of-labeled-data problem in schema matching. The results of the schema matching with building-energy-domain data show the pre-trained language model provides a massive improvement in the accuracy of schema matching and the active-learning method greatly reduces the amount of labeled data required.

Funder

MATRYCS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. Lucon, O., Urge-Vorsatz, D., Ahmed, A.Z., Akbari, H., Bertoldi, P., Cabeza, L., and Liphoto, E. (2014). Gadgil Chapter 9—Buildings. Clim. Chang.

2. Brick: Metadata schema for portable smart building applications;Balaji;Appl. Energy,2018

3. The forthcoming information revolution: Its impact on society and firms;Makridakis;Futures,1995

4. Pritoni, M., Weyandt, C., Carter, D., and Elliott, J. (2022, November 19). Towards a Scalable Model for Smart Buildings. Lawrence Berkeley National Laboratory. Available online: https://escholarship.org/uc/item/5b7966hh.

5. Benndorf, G.A., Wystrcil, D., and Réhault, N. (2018). Energy performance optimization in buildings: A review on semantic interoperability, fault detection, and predictive control. Appl. Phys. Rev., 5.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3