Author:
Pan Zhiyu,Yang Muchen,Monti Antonello
Abstract
AbstractData integration in the energy sector, which refers to the process of combining and harmonizing data from multiple heterogeneous sources, is becoming increasingly difficult due to the growing volume of heterogeneous data. Schema matching plays a crucial role in this process by giving each representation a unique identity by matching raw energy data to a generic data model. This study uses an energy domain language model to automate schema matching, reducing manual effort in integrating heterogeneous data. We developed two energy domain language models, Energy BERT and Energy Sentence Bert, and trained them using an open-source scientific corpus. The comparison of the developed models with the baseline model using real-life energy domain data shows that Energy BERT and Energy Sentence Bert models significantly improve the accuracy of schema matching.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献