Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis

Author:

Ahmadi ArmanORCID,Olyaei MohammadaliORCID,Heydari Zahra,Emami MohammadORCID,Zeynolabedin Amin,Ghomlaghi ArashORCID,Daccache AndreORCID,Fogg Graham E.ORCID,Sadegh Mojtaba

Abstract

Groundwater is a vital source of freshwater, supporting the livelihood of over two billion people worldwide. The quantitative assessment of groundwater resources is critical for sustainable management of this strained resource, particularly as climate warming, population growth, and socioeconomic development further press the water resources. Rapid growth in the availability of a plethora of in-situ and remotely sensed data alongside advancements in data-driven methods and machine learning offer immense opportunities for an improved assessment of groundwater resources at the local to global levels. This systematic review documents the advancements in this field and evaluates the accuracy of various models, following the protocol developed by the Center for Evidence-Based Conservation. A total of 197 original peer-reviewed articles from 2010–2020 and from 28 countries that employ regression machine learning algorithms for groundwater monitoring or prediction are analyzed and their results are aggregated through a meta-analysis. Our analysis points to the capability of machine learning models to monitor/predict different characteristics of groundwater resources effectively and efficiently. Modeling the groundwater level is the most popular application of machine learning models, and the groundwater level in previous time steps is the most employed input data. The feed-forward artificial neural network is the most employed and accurate model, although the model performance does not exhibit a striking dependence on the model choice, but rather the information content of the input variables. Around 10–12 years of data are required to develop an acceptable machine learning model with a monthly temporal resolution. Finally, advances in machine and deep learning algorithms and computational advancements to merge them with physics-based models offer unprecedented opportunities to employ new information, e.g., InSAR data, for increased spatiotemporal resolution and accuracy of groundwater monitoring and prediction.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3