Learning Response-Consistent and Background-Suppressed Correlation Filters for Real-Time UAV Tracking

Author:

Zhang Hong1,Li Yan1ORCID,Liu Hanyang1,Yuan Ding1,Yang Yifan2

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China

Abstract

With the advantages of discriminative correlation filter (DCF) in tracking accuracy and computational efficiency, the DCF-based methods have been widely used in the field of unmanned aerial vehicles (UAV) for target tracking. However, UAV tracking inevitably encounters various challenging scenarios, such as background clutter, similar target, partial/full occlusion, fast motion, etc. These challenges generally lead to multi-peak interferences in the response map that cause the target drift or even loss. To tackle this problem, a response-consistent and background-suppressed correlation filter is proposed for UAV tracking. First, a response-consistent module is developed, in which two response maps are generated by the filter and the features extracted from adjacent frames. Then, these two responses are kept to be consistent with the response from the previous frame. By utilizing the l2-norm constraint for consistency, this module not only can avoid sudden changes of the target response caused by background interferences but also enables the learned filter to preserve the discriminative ability of the previous filter. Second, a novel background-suppressed module is proposed, which makes the learned filter to be more aware of background information by using an attention mask matrix. With the introduction of this module into the DCF framework, the proposed method can further suppress the response interferences of distractors in the background. Finally, extensive comparative experiments have been conducted on three challenging UAV benchmarks, including UAV123@10fps, DTB70 and UAVDT. Experimental results have proved that our tracker has better tracking performance compared with 22 other state-of-the-art trackers. Moreover, our proposed tracker can run at ∼36 FPS on a single CPU for real-time UAV tracking.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3