Research on Small-Scale Detection Instrument for Drinking Water Combined Laser Spectroscopy and Conductivity Technology

Author:

Tian Zhaoshuo1,Chen Hao1,Ding Qiping1,Che Xiaohua1,Bi Zongjie1,Wang Ling1

Affiliation:

1. Institute of Ship and Ocean Opto-Elec Equipment, Harbin Institute of Technology, Weihai 264209, China

Abstract

In order to realize rapid and accurate evaluation of drinking water quality, a small-scale water quality detection instrument is designed in this paper that can detect two representative water quality parameters: the permanganate index and total dissolved solids (TDS). The permanganate index measured by the laser spectroscopy method can achieve the approximate value of the organic matter in water, and the TDS measured by the conductivity method can obtain the approximate value of the inorganic matter in water. In addition, to facilitate the popularization of civilian applications, the evaluation method of water quality based on the percent-scores proposed by us is presented in this paper. The water quality results can be displayed on the instrument screen. In the experiment, we measured the water quality parameters of the tap water as well as those after the primary and secondary filtration in Weihai City, Shandong Province, China. The testing results show that the instrument can quickly detect dissolved inorganic and organic matter, and intuitively display the water quality evaluation score on the screen. The instrument designed in this paper has the advantages of high sensitivity, high integration, and small volume, which lays the foundation for the popularity of the detection instrument.

Funder

National Natural Science Foundation of China

China National Key R&D Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Validation of conventional and synchronous fluorescence emission of potable water;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3