A Kinetic Monte Carlo Approach to Model Barite Dissolution: The Role of Reactive Site Geometry

Author:

Kurganskaya InnaORCID,Trofimov Nikolay,Luttge AndreasORCID

Abstract

Barite (Ba[SO4]) is one of the promising candidates for sequestration of radioactive waste. Barite can incorporate radium (Ra) and form ideal solid solutions, i.e., (Ba,Ra)[SO4]. Together with isostructural celestite (Sr[SO4]), ternary solid solutions, (Ba,Sr,Ra)[SO4], may exist in natural conditions. Our fundamental understanding of the dissolution kinetics of isostructural sulfates is critically important for a better risk assessment of nuclear waste repositories utilizing this mineral for sequestration. So far, the barite-water interface has been studied with experimental methods and atomistic computer simulations. The direct connection between the molecular scale details of the interface structure and experimental observations at the microscopic scale is not yet well understood. Here, we began to investigate this connection by using a kinetic Monte Carlo approach to simulate the barite dissolution process. We constructed a microkinetic model for the dissolution process and identified the reactive sites. Identification of these sites is important for an improved understanding of the dissolution, adsorption, and crystal growth mechanisms at the barite–water interface. We parameterized the molecular detachment rates by using the experimentally observed etch pit morphologies and atomic step velocities. Our parameterization attempts demonstrated that local lattice coordination is not sufficient to differentiate between the kinetically important sites and estimate their detachment rates. We suggest that the water structure and dynamics at identified sites should substantially influence the detachment rates. However, it will require more work to improve the parameterization of the model by means of Molecular Dynamics and ab initio calculations.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3