The Effect of Macroscopic Particle Features on Mineral Dissolution

Author:

Winardhi Chandra Widyananda1ORCID,Godinho Jose Ricardo da Assuncao1,Gutzmer Jens1ORCID

Affiliation:

1. Helmholtz Zentrum Dresden-Rossendorf, Helmholtz Institut Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany

Abstract

Mineral dissolution is a dynamic process in which kinetics depend on the reactive surface area, orientation, and geometry of the dissolving mineral grain. Dissolution rate is, thus, not represented by a single value, but rather, by a spectrum that is affected by the reactivity of different types of surface features. Such dissolution rate spectra are usually obtained by very detailed studies of perfectly cleaved surfaces by atomic force microscopy or in situ studies, such as flow-through experiments. This study visualizes dissolution progress by repeated X-ray computed tomography scans of a single particle. This allows studying the influence of larger particle features, such as corners and edges, at the interception of macroscopic faces of particles, as well as the influence of those macroscopic features on the dissolution rate spectra. As a suitable case study, the dissolution of a monomineralic galena (PbS) particle in ethaline is studied. The observed changes in particle geometry are evaluated using a newly developed empirical model in order to break down the rate spectra as a function of the particle geometry. Results illustrate that dissolution rates are exponentially correlated with the distance to crystal corners and edges. The reactivity map generated from these exponential relations shows a linear trendline with the dissolution rates over the entire surface of the studied galena particle. The empirical reactivity map developed here opens the possibility of predicting the dissolution rate of particulate materials based on computed tomography and the optimal geometrical properties of the particles that maximize the dissolution, e.g., size and shape.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3