2D and 3D Seismic Survey for Sandstone-Type Uranium Deposit and Its Prediction Patterns, Erlian Basin, China

Author:

Wu Qubo,Wang Yanchun,Li Ziying,Qiao Baoping,Yu Xiang,Huang Weichuan,Cao Chengyin,Li Ziwei,Pan Ziqiang,Huang Yucheng

Abstract

The Erlian basin is one of the most important basins in northern China to host sandstone-type uranium deposits (SUDs), in which Bayanwula, Saihangaobi, and Hadatu are under development, to name a few. Issues such as the metallogenic mechanism and mineralization of these deposits need to be addressed throughout the mining process. Over the past several decades, 2D and 3D seismic reflection surveys have been carried out to study these typical SUDs. The seismic technique has become the most effective geophysical tool of uranium (U) exploration, and it is used to develop our understanding of the stratigraphic configuration, faults, and sandstone contents of target layers in uranium environments. In addition, seismic interpretation could yield useful suggestions regarding the subsequent drilling program in the work area. There are two seismically predictable patterns of SUDs, named “Big depression + fault” and “Large-angle unconformity + fault”, which have been established following detailed seismic research in this basin. The characteristics of these faults are as follows: (1) the “‘U’-shaped formation” is conducive to the inflow of O-U-bearing groundwater into the target sandstone; (2) the “Big depression of reductive formation” provides plenty of organic matter (containing reducing media and U pre-enrichment) to promote redox reaction mineralization; (3) “Large-angle unconformity” is favorable to the migration of reducing substances, consequently leading to an enhancement in redox U mineralization; (4) “faults with long-term activity” become rising channels for reducing the presence of fluids and gases at depth; and (5) “sandstone and its scrambled seismic facies”. The results also offer indirect evidence of a connection between hydrothermal fluids and U mineralization; a hypothesis of “hydrothermal effusion” mineralization is proposed accordingly. In conclusion, seismically produced images of geological structures and sandstone distribution could yield important information for U prospecting and mine planning; it is worth considering seismic technologies in the future exploration of SUDs.

Funder

LONG CAN II Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference62 articles.

1. The implication of six kinds of new sandstone-type uranium deposits touranium resources potential in North China;Zhang;Geol. China,2010

2. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China

3. Global Miocene tectonics and regional sandstone-style uranium mineralization

4. Uranium 2016: Resources, Production and Demand,2016

5. IAEA Tecdoc Series: Geological Classification of Uranium Deposits and Description of Selected Examples,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3