A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China

Author:

Li Guihe12,Yao Jia2ORCID,Song Yiming3,Tang Jieyun3,Han Hongdou3,Cui Xiangdong3

Affiliation:

1. School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

2. College of Engineering and Physical Sciences, University of Wyoming, Laramie, WY 82071, USA

3. Research Institute of Exploration and Development, Liaohe Oilfield Company, CNPC, Panjin 124010, China

Abstract

As a valuable mineral resource, uranium is extensively utilized in nuclear power generation, radiation therapy, isotope labeling, and tracing. In order to achieve energy structure diversification, reduce dependence on traditional fossil fuels, and promote the sustainable development of energy production and consumption, research on the metallogenic mechanisms and related development technologies of uranium resources has been one of the focuses of China’s energy development. Sandstone-type uranium deposits make up approximately 43% of all deposits in China, making them the most prevalent form of uranium deposit there. Sandstone-type uranium deposits and hydrocarbon resources frequently coexist in the same basin in China. Therefore, this study summarizes the spatial and chronological distribution, as well as the geological characteristics, of typical sandstone-type uranium deposits in China’s hydrocarbon-bearing basins. From the perspectives of fluid action, geological structure, and sedimentary environment, the metallogenic mechanisms of sandstone-type uranium deposits in hydrocarbon-bearing basins are explored. According to the research, the rapid reduction effect of oil and gas in the same basin is a major factor in the generation of relatively large uranium deposits. Additionally, ions such as CO32− and HCO3− in hydrothermal fluids of hydrocarbon-bearing basins, which typically originate from dispersed oil and gas, are more conducive to uranium enrichment and sedimentation. This study provides guidance for efficient sandstone-type uranium deposit exploration and production in hydrocarbon-bearing basins and helps to achieve significant improvements in uranium resource exploitation efficiency.

Funder

Prospective Fundamental Technological Research Project of China National Petroleum Corporation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3