Numerical Prediction of Microstructure Evolution of Small-Diameter Stainless Steel Balls during Cold Skew Rolling

Author:

Zhou Jing12,Liu Shengqiang1,Wang Baoyu12ORCID,Xu Hao1

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Engineering Research Center of Part Rolling, Ministry of Education, Beijing 100083, China

Abstract

The wear resistance and hardness of stainless steel (SS) balls formed by cold skew rolling are effectively improved due to the change in internal microstructure. In this study, based on the deformation mechanism of 316L stainless steel, a physical mechanism-based constitutive model was established and implemented in a subroutine of Simufact to investigate the microstructure evolution of 316L SS balls during the cold skew rolling process. The evolution of equivalent strain, stress, dislocation density, grain size, and martensite content was studied via simulation during the steel balls’ cold skew rolling process. The corresponding skew rolling experiments of steel balls were carried out to verify the accuracy of the finite element (FE) model results. The results showed that the macro dimensional deviation of steel balls fluctuates less, and the microstructure evolution agrees well with the simulation results, which proves that the established FE model has high credibility. It shows that the FE model, coupled with multiple deformation mechanisms, provides a good prediction of the macro dimensions and internal microstructure evolution of small-diameter steel balls during cold skew rolling.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3