Effect of Ni element on microstructure and properties of cold-rolled 316 L austenitic stainless steel

Author:

Zhang Xin,Xiao Yao,Cai YangchuanORCID

Abstract

Abstract In this current investigation, the impact of Nickel (Ni) on the microstructural attributes and properties of a cold-rolled 316 L sheet was examined. The microstructure and phase configuration of austenitic stainless steels, specifically 316 L and 316LNi, were meticulously characterized through the utilization of metallography, X-ray Diffraction (XRD), and Electron Backscatter Diffraction (EBSD) techniques. Subsequent assessments were conducted to evaluate magnetic characteristics, microhardness, and tensile properties. The phase structure of both austenitic stainless steels conforms to a Face-Centered Cubic (FCC) crystal lattice, whereby the grain content oriented along the (110) plane progressively escalates with augmenting degrees of cold rolling. The magnetic conductivity of these austenitic stainless steels satisfactorily adheres to established standards. The incorporation of Nickel (Ni) into the alloy composition enhances the cold deformation capacity of 316 L stainless steel. However, substantial plastic deformation yields heightened dislocation density, thereby promoting enlarged grain dimensions upon solution treatment. Throughout subsequent cold rolling deformation sequences, the augmented grain size observed in 316LNi stainless steel leads to a reduction in dislocation density within the equivalently ordered cold-rolled plate. Simultaneously, this augmented grain size engenders a decline in grain boundary content coupled with an augmentation in twin content. Consequently, the interplay of grain coarsening, diminished dislocation density, and twin-induced softening collectively bestows upon 316LNi stainless steel a lower tensile strength compared to 316 L stainless steel, albeit accompanied by heightened plasticity.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3