Abstract
Based on a recently published theoretical model, in this work we experimentally studied the problem of gravity water drainage due to continuous steam injection into an elliptical porous chamber made of glass beads and embedded in a metallic, quasi-2D, massive cold slab. This configuration mimics the process of steam condensation for a given time period during the growth stage of the steam-assisted gravity drainage (SAGD) process, a method used in the recovery of heavy and extra-heavy oil from homogeneous reservoirs. Our experiments validate the prediction of the theoretical model regarding the existence of an optimal injected steam mass flow rate per unit length, ϕopt, to achieve the maximum recovery of a condensate (water). We found that the recovery factor is close to 85% when measured as the percentage of the mass of water recovered with respect to the injected mass. Our results can be extended to actual oil-saturated reservoirs because the model involves the formation of a film of condensates close to the chamber edge that allows for gravity drainage of a water/oil emulsion into the recovery well.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献