Simulation of Natural Convection by Multirelaxation Time Lattice Boltzmann Method in a Triangular Enclosure

Author:

Baliti JamalORCID,Elguennouni YoussefORCID,Hssikou MohamedORCID,Alaoui MohammedORCID

Abstract

The natural convection of incompressible flow confined within an enclosed right-angled triangular and isosceles cavity was investigated numerically using the multirelaxation time lattice Boltzmann method (MRT-LBM). According to the left and inclined walls thermal boundary conditions, two cases were considered in this study. In the first case, the inclined side of the enclosure was adiabatic, and the horizontal wall was heated, while the left one was kept at a cold temperature. However, the states of the left and inclined walls were interchanged in the second case. As the flow is only transported under the convection force, this study was carried out for the Rayleigh number ranging from Ra=103 to 106. The effects of the Rayleigh number on velocity and temperature profiles, streamlines, isotherms, and average Nusselt number were investigated. The position of cold and adiabatic walls had a great effect on the results. The results obtained are in good agreement with those of the literature and show the robustness of the MRT-LBM approach. In both cases, the heat-transfer rate increases with the increase in the Rayleigh number.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3