Aerodynamics of High-Speed Trains with Respect to Ground Simulation

Author:

Weidner DennisORCID,Stoll Daniel,Kuthada Timo,Wagner Andreas

Abstract

Wind tunnel testing is commonly used to assess and optimize the aerodynamic characteristics of high-speed trains. The train model is usually mounted above a static ground plane, but a moving ground is necessary for the correct representation of the relative motion between train and ground. This study focuses on the effect of the applied ground simulation on the aerodynamics of a high-speed train. Wind tunnel tests using a stationary and a moving ground were carried out using a 1:20 scale model of a high-speed train’s first car. Numerical simulations for two moving ground configurations are created, and the simulation setup is validated using surface pressure measurements from the wind tunnel tests. It is shown that the ground simulation has a significant effect on the drag in the considered yaw angle range. Additionally, the change in drag due to bogie fairings is evaluated and an impact of the applied ground simulation on the drag reduction is observed. The drag reduction of front and rear bogie fairings is valued similarly using a static ground, however on a moving ground the drag reduction of front bogie fairings is significantly increased. Good agreement between simulations and experiments is achieved.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3