Comparison of Lattice Boltzmann and Navier-Stokes for Zonal Turbulence Simulation of Urban Wind Flows

Author:

Camps Santasmasas Marta,Zhang XutongORCID,Parslew Ben,Lane-Serff Gregory F.,Millar Joshua,Revell AlistairORCID

Abstract

In modelling turbulent flow around buildings, the computational domain needs to be much larger than the immediate neighbourhood of the building, resulting in computational costs that are excessive for many engineering applications. Two nested models are presented to solve this problem, with an outer domain calculated using a Reynolds Averaged Navier Stokes (RANS) solver in both cases. The inner region is calculated using large eddy simulation (LES) from both a lattice Boltzmann (LB) and a Navier Stokes (NS) based solver. The inner domains use the mean RANS velocity as boundary conditions for the top and the side boundaries and incorporate the RANS turbulence using a synthetic eddy method (SEM) at the inner domain inlet. Both models are tested using an atmospheric boundary layer flow around a rectangular building at ReH = 47,893, comparing the computational resources spent and validating the results with experimental measurements. The effect of the inlet turbulence, the size of the domain and the cell size are also investigated. Both LB and NS based simulations are able to capture the physics of the flow correctly and show good agreement with the experimental results. Both simulation frameworks were configured to run in a similar computational time, so as to compare the computational resources used. Due to the use of GPU programming, the approach based on LB was estimated to be 25 times cheaper than the NS simulation. Thus these results show that a nested LB-LES solver can run accurate wind flow calculations with consumer level/cloud based computational resources.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3