Wind-Induced Response Assessment of CAARC Building Based on LBM and FSI Simulation

Author:

Zhang Shen1,Wang Yifan1,Cheng Ming1ORCID,Li Yun1,Wang Jie1

Affiliation:

1. Central-South Architectural Design Institute Co., Ltd., Wuhan 430071, China

Abstract

It is very important for the wind-resistant design of high-rise buildings to assess wind-induced vibrations efficiently. The Lattice Boltzmann Method-based Large Eddy Simulation and Fluid–Structure Interaction techniques are used to identify the surface wind pressure and wind-induced dynamic response of a CAARC standard high-rise building. Compared with wind tunnel tests, a detailed analysis of the accuracy of simulated wind pressures and base moments of the CAARC model are discussed under multiple wind direction angles. The differences between one-way and two-way Fluid–Structure Interaction simulations are compared under two different reduced wind velocities. The research results show that the simulated mean surface wind pressures of building under seven wind direction conditions have an error within 15% compared to probe measurements, and the average and root mean square base bending moments agree well with the wind tunnel tests. The top transverse wind-induced vibrations of the buildings are significantly larger when the reduced wind velocity reaches 4.6, indicating that aerodynamic damping effects on structural responses should not be overlooked. The research findings of this article provide valuable technical references for the application of LBM methods in the wind load effect assessments of high-rise buildings.

Funder

Major Program (JD) of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3