Electroviscoelstic Stability Analysis of Cylindrical Structures in Walters B Conducting Fluids Streaming through Porous Medium

Author:

Metwaly T. M. N.ORCID,Hafez N. M.

Abstract

In this research, the linear stability of a cylindrical interface between two viscoelstic Walters B conducting fluids moving through a porous medium is investigated theoretically and numerically. The fluids are influenced by a uniform axial electric field. The cylindrical structure preserves heat and mass transfer across the interface. The governing equations of motion and continuity are linearized, as are Maxwell’s equations in quasi-static approximation and the suitable boundary conditions at the interface. The method of normal modes has been used to obtain a quadratic characteristic equation in frequency with complex coefficients describing the interaction between viscoelstic Walters B conducting fluids and the electric field. In light of linear stability theory, the Routh–Hurwitz criteria are used to govern the structure’s stability. Several special cases are recoverd under suitable data choices. The stability analysis is conferred in detail via the behaviors of the applied electric field and the imaginary growth rate part with the wavenumbers. The effects of various parameters on the interfacial stability are theoretically presented and illustrated graphically through two sets of figures. Our results demonstrate that kinematic viscosities, kinematic viscoelasticities, and medium porosity improve stability, whereas medium permeability, heat and mass transfer coefficients, and fluid velocities decrease it. Finally, electrical conductivity has a critical influence on the structure’s stability.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference56 articles.

1. An Introduction to Astrophysical Hydrodynamics;Shore,1992

2. Hydrodynamic and Hydromagnetic Stability;Chandrasekhar,1961

3. Nonlinear wave packets in the Kelvin-Helmholtz instability;Weissman;Philosiphical Trans. R. Soc. Lond. A,1979

4. Nonlinear Evolution of the Kelvin–Helmholtz Instability of Supersonic Tangential Velocity Discontinuities

5. Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3