Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel

Author:

FUNADA T.,JOSEPH D. D.

Abstract

We study the stability of stratified gas–liquid flow in a horizontal rectangular channel using viscous potential flow. The analysis leads to an explicit dispersion relation in which the effects of surface tension and viscosity on the normal stress are not neglected but the effect of shear stresses is. Formulas for the growth rates, wave speeds and neutral stability curve are given in general and applied to experiments in air–water flows. The effects of surface tension are always important and determine the stability limits for the cases in which the volume fraction of gas is not too small. The stability criterion for viscous potential flow is expressed by a critical value of the relative velocity. The maximum critical value is when the viscosity ratio is equal to the density ratio; surprisingly the neutral curve for this viscous fluid is the same as the neutral curve for inviscid fluids. The maximum critical value of the velocity of all viscous fluids is given by that for inviscid fluid. For air at 20°C and liquids with density ρ = 1 g cm−3 the liquid viscosity for the critical conditions is 15 cP: the critical velocity for liquids with viscosities larger than 15 cP is only slightly smaller but the critical velocity for liquids with viscosities smaller than 15 cP, like water, can be much lower. The viscosity of the liquid has a strong effect on the growth rate. The viscous potential flow theory fits the experimental data for air and water well when the gas fraction is greater than about 70%.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3