Sentiment Analysis on Twitter Data of World Cup Soccer Tournament Using Machine Learning

Author:

Patel Ravikumar,Passi KalpdrumORCID

Abstract

In the derived approach, an analysis is performed on Twitter data for World Cup soccer 2014 held in Brazil to detect the sentiment of the people throughout the world using machine learning techniques. By filtering and analyzing the data using natural language processing techniques, sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset is normalized to be used by machine learning algorithms and prepared using natural language processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS) tagger, name entity recognition (NER), and parser to extract emotions for the textual data from each tweet. This approach is implemented using Python programming language and Natural Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method. The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best area under the receiver operating characteristics curve (AUC) of 0.97.

Publisher

MDPI AG

Subject

General Engineering

Reference29 articles.

1. Natural Language Processing with Python;Steven,2009

2. Twitterhttps://about.twitter.com/company

3. A Literature Survey of Active Machine Learning in the Context of Natural Language Processinghttps://www.semanticscholar.org/paper/A-literature-survey-of-active-machine-learning-in-Olsson/abebd207b1cf56ced502b0bb203d1f231b58d699

4. Sentiment Analysis and Text Mining for Social Media Microblogs using Open Source Tools: An Empirical Study;Eman;Int. J. Comput. Appl.,2015

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3