Evaluation of Supervised Learning Models in Predicting Greenhouse Energy Demand and Production for Intelligent and Sustainable Operations

Author:

Ouazzani Chahidi LailaORCID,Fossa MarcoORCID,Priarone Antonella,Mechaqrane Abdellah

Abstract

Plants need a specific environment to grow and reproduce in fine fettle. Nevertheless, climatic conditions are not stable and can impact their well-being and, consequently, harvest quality. Thus, greenhouse cultivation is one of the suitable agricultural techniques for creating and controlling the inside microclimate to be adequate for plant growth. The relevance of greenhouse control is widely recognized. The prediction of greenhouse variables using artificial intelligence methods is of great interest for intelligent control and the potential reduction in energetic and financial losses. However, the studies carried out in this context are still more or less limited and several machine learning methods have not been sufficiently exploited. The aim of this study is to predict the air conditioning electrical consumption and photovoltaic module electrical production at the smart Agro-Manufacturing Laboratory (SamLab) greenhouse, located in Albenga, north-western Italy. Different supervised machine learning methods were compared, namely, Artificial Neural Networks (ANNs), Gaussian Process Regression (GPR), Support Vector Machine (SVM) and Boosting trees. We evaluated the performance of the models based on three statistical indicators: the coefficient of correlation (R), the normalized root mean square error (nRMSE) and the normalized mean absolute error (nMAE). The results show good agreement between the measured and predicted values for all models, with a correlation coefficient R > 0.9, considering the validation set. The good performance of the models affirms the importance of this approach and that it can be used to further improve greenhouse efficiency through its intelligent control.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas. FAO Plant Production and Protection Paper 217;Savvas,2013

2. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides

3. A comprehensive review on automation in agriculture using artificial intelligence

4. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review

5. Artificial intelligence in agriculture;Pantazi,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3