Integrated Vehicle-Following Control for Four-Wheel Independent Drive Based on Regenerative Braking System Control Mechanism for Battery Electric Vehicle Conversion Driven by PMSM 30 kW

Author:

Techalimsakul Pataphiphat1,Keyoonwong Wiwat2

Affiliation:

1. Program in Electronics and Automation Systems Engineering, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Khlong Hok 12110, Thailand

2. School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

This study proposed the hybrid energy storage paradigm (HESP) equipped with front-wheel permanent magnet synchronous motors (PMSMs) for battery electric vehicles (BEVs). In this case, all four wheels are driven by a single motor using mechanical coupling to distribute the motor’s power to each wheel evenly. The HESP is a combination of several supercapacitors (SCs) and an NMC-lithium battery equipped with an advanced artificial neural network (ANN) that will enhance the regenerative braking system (RBS) efficiency of energy storage during braking. The three-phase inverter switching algorithm ensures efficient regenerative braking and fine adjustment of the brake force distribution. Under the RBS, the HESP with the ANN first transfers braking energy to the SC and, when the safety standard is reached, the SC transfers it to the battery. The RBS control maintains an even distribution of braking force at all distances to ensure stability during braking. The results show that a traditional BEV can drive 245.46 km (35 cycles), while an EV with an RBS-only battery can drive 282.56 km (40 cycles). An EV with HESP-RBS can drive 338.78 km (48 cycles), which is an increase of 93.32 km (13 cycles). The HESP-RBS increased the regenerative efficiency by 38.01% when compared to a traditional BEV.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3