Viewpoint Planning for Range Sensors Using Feature Cluster Constrained Spaces for Robot Vision Systems

Author:

Magaña Alejandro1ORCID,Vlaeyen Michiel23ORCID,Haitjema Han23ORCID,Bauer Philipp1ORCID,Schmucker Benedikt1,Reinhart Gunther1

Affiliation:

1. Institute for Machine Tools and Industrial Management, Technical University of Munich, 85747 Garching, Germany

2. Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium

3. Flanders Make—Core Lab MaPS, KU Leuven, 3001 Leuven, Belgium

Abstract

The efficient computation of viewpoints for solving vision tasks comprising multi-features (regions of interest) represents a common challenge that any robot vision system (RVS) using range sensors faces. The characterization of valid and robust viewpoints is even more complex within real applications that require the consideration of various system constraints and model uncertainties. Hence, to address some of the challenges, our previous work outlined the computation of valid viewpoints as a geometrical problem and proposed feature-based constrained spaces (C-spaces) to tackle this problem efficiently for acquiring one feature. The present paper extends the concept of C-spaces to consider multi-feature problems using feature cluster constrained spaces (GC-spaces). A GC-space represents a closed-form, geometrical solution that provides an infinite set of valid viewpoints for acquiring a cluster of features satisfying diverse viewpoint constraints. Furthermore, the current study outlines a generic viewpoint planning strategy based on GC-spaces for solving vision tasks comprising multi-feature scenarios effectively and efficiently. The applicability of the proposed framework is validated on two different industrial vision systems used for dimensional metrology tasks.

Funder

Bavarian Ministry of Economic Affairs and Media, Energy and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3