Exposure time and point cloud quality prediction for active 3D imaging sensors using Gaussian process regression

Author:

Magaña AlejandroORCID,Schneider Lukas,Benker Maximilian,Altmann Thomas,Bauer Philipp,Reinhart Gunther

Abstract

AbstractSetting an optimal image exposure is crucial for acquiring dense point clouds using 3D active optical sensor systems such as structured light sensors [structured light sensors (SLSs)] and active stereo sensors. One of the most common and seamless ways to optimize the image brightness of an image exposure is to adjust the camera’s exposure time. However, optimizing the image exposure alone is ineffective for acquiring surfaces of large-scale objects with a complex topology if a spatial understanding of the scene is neglected. Hence, the present paper proposes a data-driven approach using two Gaussian processes [Gaussian processes (GPs)] regression models to select a proper exposure time considering the nonlinear correlations between image exposure and the scene spatial relationships. To model these correlations, our study introduces first the generic synthesization of seven inputs and two target variables. Then, based on these inputs, two independent GPs are designed: one for predicting the measurement quality and one for estimating the exposure time. The performance and generalizability of both models are thoroughly evaluated using an SLS and an active stereo sensor. The evaluation demonstrated that the point cloud quality models adequately matched observations with an R2 exceeding 90%. Specifically, the models predicted point cloud quality with an root mean square error (RMSE) of 10%. Additionally, the assessment of the performance of the exposure time models showed a model fit with an R2 above 97%. The exposure time prediction accuracy, as evidenced by the RMSE values, was within 10% of the corresponding exposure time range for each sensor. The present research shows the potential and effectiveness to completely automate the assessment of a point cloud quality and the selection of exposure times with the help of data-driven models.

Funder

Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3