A Case Study of Wave–Wave Interaction South to Dongsha Island in the South China Sea

Author:

Zeng Zhi12ORCID,Chen Xueen2ORCID,Yuan Chunxin3,Song Jun1

Affiliation:

1. College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China

2. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China

3. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

Abstract

In a SAR image acquired by the ERS-2 satellite, crossed “X-shape” internal solitary waves (ISWs) south to Dongsha Island are found to be a wave–wave interaction composed of five solitons: two head waves, two tail waves, and the overlapped part. To explain this remote sensing phenomenon, based on a high-resolution three-dimensional MIT general circulation model (MITgcm) using realistic topography and tidal forcing, the “X-shape” internal waves are reproduced at the same location. The development processes of the waves indicate that the “X-shape” ISWs are two waves diffracted from one internal wave southeast to Dongsha Island. During the propagation, the amplitude of their overlapped part of the “X-shape” ISWs becomes significantly larger than the sum of the amplitudes of both head waves, which proves that nonlinear wave–wave interaction has occurred. Based on wave–wave interaction theory, the theoretical maximum value of the amplitude of the overlapped part at the initial moment is calculated as 14.12 m, which is in good agreement with the model results of 14 m. Meanwhile, the variation of the theoretical amplitude of the overlapped part is basically consistent with that of the modeled one, confirming the occurrence of the wave–wave interaction. Besides, when the waves propagate over varying water depths, the type of the wave–wave interaction can change rather than being fixed from the start.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3