On the Sensing and Calibration of Residual Stresses Measurements in the Incremental Hole-Drilling Method

Author:

Ammar MohamedORCID,Shirinzadeh Bijan,Lai Kai,Wei WeichenORCID

Abstract

The current study presents three calibration approaches for the hole-drilling method (HDM). A total of 72 finite element models and 144 simulations were established to calibrate the measurements of the strain sensors. The first approach assumed the stresses acted on the boundaries of the drilled hole and thus analyzed the surrounding displacements field. The second analysis considered the loads on the outer surfaces of the specimen while measuring the strains’ differences between the model with and without the drilled hole. The third approach was more comprehensive as it considered the mechanical and thermal effects of the drilling operations. The proposed approaches were applied to two different materials (AISI 1045 and CFRP). The steel specimens were machined using a CNC lathe while the composite laminates were manufactured using the robotic fiber placement (RFP) process. Subsequently, the residual stresses (RSs) were measured using the HDM. The obtained data were compared with X-ray diffraction measurements for validation. The results showed better estimation of the RSs when utilizing the third approach and clear underestimation of the stresses using the second approach. A divergence in RSs values between the three approaches was also detected when measuring the stresses in the internal layers of the composite laminates.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3