Multi-response optimisation of wire-arc additive manufacturing process parameters for AISI 4130 steel during remanufacturing process

Author:

Kachomba TalentORCID,Mutua James,Obiko Japheth,Ngoret Joshua

Abstract

Abstract Wire-arc additive manufacturing (WAAM) has emerged as a critical tool for remanufacturing industrial components. A limited understanding of this technique for quality product manufacturing has hindered its utilisation for industrial applications. This study reports on the optimisation of WAAM process parameters for AISI 4130 steel towards remanufacturing of high-quality products for industrial applications. AISI 4130 steel was selected for this study due to its high strength-to-weight ratio, excellent weldability, and suitability for the WAAM process. Taguchi’s Grey Relational Analysis (GRA) used four factors and three levels in the multiple response optimisation process. The study considered process parameters voltage, current, travel speed and gas flow in the gas metal arc welding (GMAW)-based WAAM technique. Analysis of Variance (ANOVA) results show that voltage, travel speed and gas flow significantly affect material deposition. Voltage had the highest significance (31.61%) compared to other parameters. The optimised process parameters were found to be: voltage –23 V, current –100 A, travel speed −350 mm min−1, and gas flow −10 L min−1. These parameters resulted in tensile residual stresses of 25 ± 74 MPa, microhardness of 171.4 ± 12.2 HV0.3, and a relative density of 98.21%. The microstructural analysis reveals the existence of predominant ferritic and pearlitic colonies. This is due to compounded thermal stresses during the deposition process and alloy composition resulting in tailored microstructure and mechanical properties. The study provides some insights into the WAAM remanufacturing process for producing highly quality industrial components.

Funder

Pan African University Institute for Basic Sciences, Technology and Innovation

Japan International Cooperation Agency

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3