Numerical Investigation of a Two-Element Wingsail for Ship Auxiliary Propulsion

Author:

Li Chen,Wang Hongming,Sun Peiting

Abstract

The rigid wingsail is a new type of propulsion equipment which greatly improves the performance of the sailboat under the conditions of upwind and downwind. However, such sail-assisted devices are not common in large ships because the multi-element wingsail is sensitive to changes in upstream flow, making them difficult to operate. This problem shows the need for aerodynamic study of wingsails. A model of two-element wingsail is established and simulated by the steady and unsteady RANS approach with the k-ω SST turbulence model and compared with the known experimental data to ensure the accuracy of the numerical simulation. Then, some key design and structural parameters (camber, the rotating axis position of the flap, angle of attack, flap thickness) are used to characterize the aerodynamic characteristics of the wingsail. The results show that the position of the rotating shaft of the flap has little influence on the lift coefficient at low camber. When stall occurs, the lift coefficient first increases and then decreases as the flap axis moves backward, which also delays the stall angle at a low camber. At the high camber of AOA = 6°, the lift coefficient always increases with the increase of the rotating axis position of the flap; especially between 85% and 95%, the lift coefficient increases suddenly, which is caused by the disappearance of large-scale flow separation on the suction surface of the flap. It reflects the nonlinear coupling effect between camber of wingsail and the rotating axis position of the flap

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference27 articles.

1. Prospect of sailequipped motor ship as assessed from experimental ship Daioh;Ishihara,1980

2. http://www.sohu.com/a/275284498_100091571

3. http://k.sina.com.cn/article_6424865154_17ef3a982001001t6p.html

4. An Experimental Investigation of a Low-Speed Circulation-Controlled Aerofoil

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3