Preliminary Feasibility Study of a Magnetic Levitation Rotor Sail for Coastal Area Operations

Author:

Lee Kwangseok1ORCID,Kim Yun Ho1ORCID,Park Junghyung1,Choi Bonggi1,Kang Hee Jin1ORCID

Affiliation:

1. Alternative Fuels and Power System Research Division, Korea Research Institute of Ships & Ocean Engineering (KRISO), Daejeon 34103, Republic of Korea

Abstract

The continuous strengthening of environmental regulations is expected to have a significant impact on the vessel operations of shipping companies. Each country must reduce greenhouse gas emissions from ships operating in domestic coastal areas to meet its Nationally Determined Contributions (NDC). For new vessels, we are assessing potential emission reductions through various technologies, recognizing that transitioning to alternative fuels is inevitable to achieve our ultimate goal of zero emissions. However, the introduction of alternative fuels for ships involves numerous challenges, including the overall replacement of propulsion systems, etc. Additionally, to ensure that existing ships can comply with the gradually increasing environmental regulations, the immediate adoption of bridge technologies that can be applied is essential. Rotor sails are recognized as a technology that can be installed on both new ships and vessels in operation, offering carbon emission reductions through thrust assistance. Rotor sails have traditionally been mainly employed on ocean routes with consistent wind patterns. In this paper, we conducted a review of the feasibility of operating rotor sails in coastal areas where wind direction frequently changes and wind intensity is not constant. Particularly, a concept of a rotor sail with magnetic bearings for the rotor sail system, utilizing the principle of magnetic levitation, is suggested. The reduction in frictional forces during rotor sail operation contributes to increased maintainability and advantages in terms of noise and vibration. Specifically, in this study, a structural design for minimizing weight for optimal performance has been carried out.

Funder

Ministry of Oceans and Fisheries of Korea

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3