Intercalibration of MERIS, MODIS, and OLCI Satellite Imagers for Construction of Past, Present, and Future Cyanobacterial Biomass Time Series

Author:

Wynne Timothy T.ORCID,Mishra Sachidananda,Meredith Andrew,Litaker R. WayneORCID,Stumpf Richard P.ORCID

Abstract

Satellite imagery has been used to monitor and assess Harmful Algal Blooms (HABs), specifically, cyanobacterial blooms in Lake Erie (the USA and Canada) for over twelve years. In recent years, imagery has been applied to the other Great Lakes as well as other U.S. lakes. The key algorithm used in this monitoring system is the cyanobacterial index (CI), a measure of the chlorophyll found in cyanobacterial blooms. The CI is a “spectral shape” (or curvature) algorithm, which is a form of the second derivative around the 681 nm (MERIS/OLCI) or 678 nm (MODIS) band, which is robust and implicitly includes an atmospheric correction, allowing reliable use for many more scenes than analytical algorithms. Monitoring of cyanobacterial blooms with the CI began with the European Space Agency’s (ESA) Medium Resolution Imaging Spectrometer (MERIS) sensor (2002–2012). With the loss of data from MERIS in the spring of 2012, the monitoring system shifted to using NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS has bands that allow computation of a CI product, which was intercalibrated with MERIS at the time to establish a conversion of MODIS CI to MERIS CI. In 2016, ESA launched the Ocean and Land Color Imager (OLCI), the replacement for MERIS, on the Sentinel-3 spacecraft. MODIS can serve two purposes. It can provide a critical data set for the blooms of 2012–2015, and it offers a bridge from MERIS to OLCI. We propose a basin-wide integrated technique for intercalibrating the CI algorithm from MODIS to both MERIS and OLCI. This method allowed us to intercalibrate OLCI CI to MERIS CI, which would then allow the production of a 20-year and ongoing record of cyanobacterial bloom activity. This approach also allows updates as sensor calibrations change or new sensors are launched, and it could be readily applied to spectral shape algorithms.

Funder

U.S. Environmental Protection Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3