A Scalable, Supervised Classification of Seabed Sediment Waves Using an Object-Based Image Analysis Approach

Author:

Summers GerardORCID,Lim Aaron,Wheeler Andrew J.ORCID

Abstract

National mapping programs (e.g., INFOMAR and MAREANO) and global efforts (Seabed 2030) acquire large volumes of multibeam echosounder data to map large areas of the seafloor. Developing an objective, automated and repeatable approach to extract meaningful information from such vast quantities of data is now essential. Many automated or semi-automated approaches have been defined to achieve this goal. However, such efforts have resulted in classification schemes that are isolated or bespoke, and therefore it is necessary to form a standardised classification method. Sediment wave fields are the ideal platform for this as they maintain consistent morphologies across various spatial scales and influence the distribution of biological assemblages. Here, we apply an object-based image analysis (OBIA) workflow to multibeam bathymetry to compare the accuracy of four classifiers (two multilayer perceptrons, support vector machine, and voting ensemble) in identifying seabed sediment waves across three separate study sites. The classifiers are trained on high-spatial-resolution (0.5 m) multibeam bathymetric data from Cork Harbour, Ireland and are then applied to lower-spatial-resolution EMODnet data (25 m) from the Hemptons Turbot Bank SAC and offshore of County Wexford, Ireland. A stratified 10-fold cross-validation was enacted to assess overfitting to the sample data. Samples were taken from the lower-resolution sites and examined separately to determine the efficacy of classification. Results showed that the voting ensemble classifier achieved the most consistent accuracy scores across the high-resolution and low-resolution sites. This is the first object-based image analysis classification of bathymetric data able to cope with significant disparity in spatial resolution. Applications for this approach include benthic current speed assessments, a geomorphological classification framework for benthic biota, and a baseline for monitoring of marine protected areas.

Funder

INTERREG Va Regional Development Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3