Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland

Author:

Janowski Łukasz1ORCID,Wróblewski Radosław23ORCID

Affiliation:

1. Maritime Institute, Gdynia Maritime University, Roberta de Plelo 20, 80-548 Gdańsk, Poland

2. Department of Geophysics, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland

3. MEWO S.A., Starogardzka 17A, 83-010 Straszyn, Poland

Abstract

The digital representation of seafloor, a challenge in UNESCO’s Ocean Decade initiative, is essential for sustainable development support and marine environment protection, aligning with the United Nations’ 2030 program goals. Accuracy in seafloor representation can be achieved through remote sensing measurements, including acoustic and laser sources. Ground truth information integration facilitates comprehensive seafloor assessment. The current seafloor mapping paradigm benefits from the object-based image analysis (OBIA) approach, managing high-resolution remote sensing measurements effectively. A critical OBIA step is the segmentation process, with various algorithms available. Recent artificial intelligence advancements have led to AI-powered segmentation algorithms development, like the Segment Anything Model (SAM) by META AI. This paper presents the SAM approach’s first evaluation for seafloor mapping. The benchmark remote sensing dataset refers to Puck Lagoon, Poland and includes measurements from various sources, primarily multibeam echosounders, bathymetric lidar, airborne photogrammetry, and satellite imagery. The SAM algorithm’s performance was evaluated on an affordable workstation equipped with an NVIDIA GPU, enabling CUDA architecture utilization. The growing popularity and demand for AI-based services predict their widespread application in future underwater remote sensing studies, regardless of the measurement technology used (acoustic, laser, or imagery). Applying SAM in Puck Lagoon seafloor mapping may benefit other seafloor mapping studies intending to employ AI technology.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3