Abstract
Earth observation satellite task scheduling research plays a key role in space-based remote sensing services. An effective task scheduling strategy can maximize the utilization of satellite resources and obtain larger objective observation profits. In this paper, inspired by the success of deep reinforcement learning in optimization domains, the deep deterministic policy gradient algorithm is adopted to solve a time-continuous satellite task scheduling problem. Moreover, an improved graph-based minimum clique partition algorithm is proposed for preprocessing in the task clustering phase by considering the maximum task priority and the minimum observation slewing angle under constraint conditions. Experimental simulation results demonstrate that the deep reinforcement learning-based task scheduling method is feasible and performs much better than traditional metaheuristic optimization algorithms, especially in large-scale problems.
Funder
the China State Key Laboratory of Robotics
Subject
General Earth and Planetary Sciences
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献