Function of the R2R3-MYB Transcription Factors in Dalbergia odorifera and Their Relationship with Heartwood Formation

Author:

Ma Ruoke1ORCID,Luo Jia1,Wang Weijie1,Song Tianqi2,Fu Yunlin1

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China

2. College of Agronomy, Northwest A&F University, Xianyang 712000, China

Abstract

R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2’H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3