Genome-Wide Identification of MYB Transcription Factors and Their Function on Floral Volatile Compounds Biosynthesis in Antirrhinum majus L.

Author:

Song Xiaohui1,Shi Senbao1,Kong Yulai1,Wang Fengyi1,Dong Shaorong1,Ma Chong1,Chen Longqing1,Qiao Zhenglin1ORCID

Affiliation:

1. Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650024, China

Abstract

The v-MYB avivan myoblastsis virus oncogene homolog (MYB) family is the largest gene family of the transcription factor in plants, involved in plant growth and development, secondary metabolism and resistance to biotic/abiotic stress. Antirrhinum majus (snapdragon) is an ideal material for studying ornamental traits. Nevertheless, there has been no systematic investigation into the AmMYB family of snapdragons. In this study, we identified a total of 162 members of the AmMYB gene family in snapdragons. Gene structure analysis showed that the AmMYB family within the same subgroup had a similar structure and motifs. Analysis of gene duplication events revealed that the amplification of the AmMYB family was driven by whole-genome duplication (WGD) and dispersed duplication. The analysis of cis-acting elements in the promoter region of AmMYB genes reveals a collaborative involvement of light-responsive growth and development elements, stress resistance elements, and hormone-responsive elements jointly participating in the regulation of the AmMYB gene. Collinearity analysis demonstrates significant functional distinctions between AmMYB and monocotyledonous plants. The classification of AmMYB members results in 3 main subgroups with 36 smaller subgroups. All AmMYB genes are distributed across all eight chromosomes, with no apparent correlation between subfamily distribution and chromosome length. Through phylogenetic analysis and RNA-seq analysis, we have identified 9 R2R3-MYB genes that potentially play a role in the regulation of floral volatile organic compounds (FVOCs) biosynthesis. Their expression patterns were verified by qRT-PCR experiments. This study establishes a robust foundation for further investigations into the functionality of AmMYB genes and their molecular mechanisms underlying FVOC biosynthesis in snapdragons.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3