Affiliation:
1. Department of Computer Science, University at Albany, Albany, NY 12203, USA
Abstract
In this study, we introduce semi-supervised machine learning models designed to predict molecular properties. Our model employs a two-stage approach, involving pre-training and fine-tuning. Particularly, our model leverages a substantial amount of labeled and unlabeled data consisting of SMILES strings, a text representation system for molecules. During the pre-training stage, our model capitalizes on the Masked Language Model, which is widely used in natural language processing, for learning molecular chemical space representations. During the fine-tuning stage, our model is trained on a smaller labeled dataset to tackle specific downstream tasks, such as classification or regression. Preliminary results indicate that our model demonstrates comparable performance to state-of-the-art models on the chosen downstream tasks from MoleculeNet. Additionally, to reduce the computational overhead, we propose a new approach taking advantage of 3D compound structures for calculating the attention score used in the end-to-end transformer model to predict anti-malaria drug candidates. The results show that using the proposed attention score, our end-to-end model is able to have comparable performance with pre-trained models.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献