Drought-Stress-Related Reprogramming of Gene Expression in Barley Involves Differential Histone Modifications at ABA-Related Genes

Author:

Ost Charlotte1,Cao Hieu Xuan2ORCID,Nguyen Thuy Linh1,Himmelbach Axel3ORCID,Mascher Martin34ORCID,Stein Nils35ORCID,Humbeck Klaus1

Affiliation:

1. Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany

2. Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany

3. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany

4. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany

5. Center of Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany

Abstract

Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.

Funder

ScienceCampus Halle-Plant-based Bioeconomy

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3