Epigenetic and Hormonal Modulation in Plant–Plant Growth-Promoting Microorganism Symbiosis for Drought-Resilient Agriculture

Author:

Kaya Cengiz1ORCID,Uğurlar Ferhat1ORCID,Adamakis Ioannis-Dimosthenis S.2ORCID

Affiliation:

1. Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey

2. Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece

Abstract

Plant growth-promoting microorganisms (PGPMs) have emerged as valuable allies for enhancing plant growth, health, and productivity across diverse environmental conditions. However, the complex molecular mechanisms governing plant–PGPM symbiosis under the climatic hazard of drought, which is critically challenging global food security, remain largely unknown. This comprehensive review explores the involved molecular interactions that underpin plant–PGPM partnerships during drought stress, thereby offering insights into hormonal regulation and epigenetic modulation. This review explores the challenges and prospects associated with optimizing and deploying PGPMs to promote sustainable agriculture in the face of drought stress. In summary, it offers strategic recommendations to propel research efforts and facilitate the practical implementation of PGPMs, thereby enhancing their efficacy in mitigating drought-detrimental effects in agricultural soils.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3