Overcoming the Limitation of Spin Statistics in Organic Light Emitting Diodes (OLEDs): Hot Exciton Mechanism and Its Characterization

Author:

Park Soo Wan1ORCID,Kim Dongwook2,Rhee Young Min1ORCID

Affiliation:

1. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

2. Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea

Abstract

Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps reduce the efficiency roll-off and improve device stability. Hot exciton materials enable the conversion of triplet excitons to singlet ones via reverse inter-system crossing from high-lying triplet states and thereby the depopulation of long-lived triplet excitons that are prone to chemical and/or efficiency degradation. Although their anti-Kasha characteristics have not been clearly explained, numerous molecules with behaviors assigned to the hot exciton mechanism have been reported. Indeed, the related developments appear to have just passed the stage of infancy now, and there will likely be more roles that computational elucidations can play. With this perspective in mind, we review some selected experimental studies on the mechanism and the related designs and then on computational studies. On the computational side, we examine what has been found and what is still missing with regard to properly understanding this interesting mechanism. We further discuss potential future points of computational interests toward aiming for eventually presenting in silico design guides.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3