Symmetry Molecular Design Strategy for Highly Efficient Blue Electroluminescence with Hot Exciton Mechanisms

Author:

Fang Kaibo1,Zhang Jiasen1,Li Wei12,Mu Xilin12,Liu Chunyu12,Wu Yujie123,Feng Tingting12,Qiao Xianfeng4,Wang Tao3,Ge Ziyi12ORCID

Affiliation:

1. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

4. State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou Guangdong 510640 P. R. China

Abstract

AbstractEmitters with a hot exciton mechanism are regarded as one of the most promising candidates for organic light‐emitting diodes (OLEDs). In this study, a deep‐blue emitter with the hot exciton mechanism is reported, namely 2An‐PCz, by integrating a pair of carbazole groups with a 9,9′‐bi‐anthracene nucleus. Owing to the symmetric molecular architecture and intrinsic local excited state character, multiple high‐lying reverse intersystem cross (hRISC) channels and large overlaps of frontier molecular orbits (FMOs) can be formed, facilitating rapid hRISC processes as well as enhancement of radiative transition rates simultaneously. Combined with the strong luminescence properties brought by the unique X‐packing mode, a high photoluminescence quantum yield of 60.5% is achieved in the non‐doped state. Strikingly, non‐doped deep‐blue OLEDs exhibited a maximum external quantum efficiency (EQE) of 10.50% with minimal efficient roll‐off, which is one of the highest values for deep‐blue organic light‐emitting devices based on hot exciton emitters thus far. The magneto‐electroluminescence (MEL) experiment and transient electroluminescence measurements corroborated that both the high EQE and suppressed efficiency roll‐off are attributable to the rapid “hot exciton” channels.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3