Machine Learning in the Classification of Soybean Genotypes for Primary Macronutrients’ Content Using UAV–Multispectral Sensor

Author:

Santana Dthenifer Cordeiro1ORCID,Teixeira Filho Marcelo Carvalho Minhoto1ORCID,da Silva Marcelo Rinaldi1,Chagas Paulo Henrique Menezes das1,de Oliveira João Lucas Gouveia2,Baio Fábio Henrique Rojo2ORCID,Campos Cid Naudi Silva2ORCID,Teodoro Larissa Pereira Ribeiro2ORCID,da Silva Junior Carlos Antonio3ORCID,Teodoro Paulo Eduardo12ORCID,Shiratsuchi Luciano Shozo4ORCID

Affiliation:

1. Department of Agronomy, State University of São Paulo (UNESP), Ilha Solteira 15385-000, SP, Brazil

2. Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul 79560-000, MS, Brazil

3. Department of Geography, State University of Mato Grosso (UNEMAT), Sinop 78550-000, MT, Brazil

4. LSU Agcenter, School of Plant, Environmental and Soil Sciences, Louisiana State University, 307 Sturgis Hall, Baton Rouge, LA 70726, USA

Abstract

Using spectral data to quantify nitrogen (N), phosphorus (P), and potassium (K) contents in soybean plants can help breeding programs develop fertilizer-efficient genotypes. Employing machine learning (ML) techniques to classify these genotypes according to their nutritional content makes the analyses performed in the programs even faster and more reliable. Thus, the objective of this study was to find the best ML algorithm(s) and input configurations in the classification of soybean genotypes for higher N, P, and K leaf contents. A total of 103 F2 soybean populations were evaluated in a randomized block design with two repetitions. At 60 days after emergence (DAE), spectral images were collected using a Sensefly eBee RTK fixed-wing remotely piloted aircraft (RPA) with autonomous take-off, flight plan, and landing control. The eBee was equipped with the Parrot Sequoia multispectral sensor. Reflectance values were obtained in the following spectral bands (SBs): red (660 nm), green (550 nm), NIR (735 nm), and red-edge (790 nm), which were used to calculate the vegetation index (VIs): normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), green normalized difference vegetation index (GNDVI), soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI), modified chlorophyll absorption in reflectance index (MCARI), enhanced vegetation index (EVI), and simplified canopy chlorophyll content index (SCCCI). At the same time of the flight, leaves were collected in each experimental unit to obtain the leaf contents of N, P, and K. The data were submitted to a Pearson correlation analysis. Subsequently, a principal component analysis was performed together with the k-means algorithm to define two clusters: one whose genotypes have high leaf contents and another whose genotypes have low leaf contents. Boxplots were generated for each cluster according to the content of each nutrient within the groups formed, seeking to identify which set of genotypes has higher nutrient contents. Afterward, the data were submitted to machine learning analysis using the following algorithms: decision tree algorithms J48 and REPTree, random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR, used as control). The clusters were used as output variables of the classification models used. The spectral data were used as input variables for the models, and three different configurations were tested: using SB only, using VIs only, and using SBs+VIs. The J48 and SVM algorithms had the best performance in classifying soybean genotypes. The best input configuration for the algorithms was using the spectral bands as input.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Apoio ao Desenvolvimento do Ensino, Ciência, e Tecnologia do Estado de Mato Grosso do Sul

SIAFEM

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3