Machine Learning-Based Approaches for Predicting SPAD Values of Maize Using Multi-Spectral Images

Author:

Guo YahuiORCID,Chen ShouzhiORCID,Li Xinxi,Cunha MarioORCID,Jayavelu SenthilnathORCID,Cammarano Davide,Fu YongshuoORCID

Abstract

Precisely monitoring the growth condition and nutritional status of maize is crucial for optimizing agronomic management and improving agricultural production. Multi-spectral sensors are widely applied in ecological and agricultural domains. However, the images collected under varying weather conditions on multiple days show a lack of data consistency. In this study, the Mini MCA 6 Camera from UAV platform was used to collect images covering different growth stages of maize. The empirical line calibration method was applied to establish generic equations for radiometric calibration. The coefficient of determination (R2) of the reflectance from calibrated images and ASD Handheld-2 ranged from 0.964 to 0.988 (calibration), and from 0.874 to 0.927 (validation), respectively. Similarly, the root mean square errors (RMSE) were 0.110, 0.089, and 0.102% for validation using data of 5 August, 21 September, and both days in 2019, respectively. The soil and plant analyzer development (SPAD) values were measured and applied to build the linear regression relationships with spectral and textural indices of different growth stages. The Stepwise regression model (SRM) was applied to identify the optimal combination of spectral and textural indices for estimating SPAD values. The support vector machine (SVM) and random forest (RF) models were independently applied for estimating SPAD values based on the optimal combinations. SVM performed better than RF in estimating SPAD values with R2 (0.81) and RMSE (0.14), respectively. This study contributed to the retrieval of SPAD values based on both spectral and textural indices extracted from multi-spectral images using machine learning methods.

Funder

the National Funds for Distinguished Young Youths

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3