Urban Built Environment Assessment Based on Scene Understanding of High-Resolution Remote Sensing Imagery

Author:

Chen Jie1ORCID,Dai Xinyi1,Guo Ya1,Zhu Jingru1,Mei Xiaoming1,Deng Min1,Sun Geng1

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Abstract

A high-quality built environment is important for human health and well-being. Assessing the quality of the urban built environment can provide planners and managers with decision-making for urban renewal to improve resident satisfaction. Many studies evaluate the built environment from the perspective of street scenes, but it is difficult for street-view data to cover every area of the built environment and its update frequency is low, which cannot meet the requirement of built-environment assessment under rapid urban development. Earth-observation data have the advantages of wide coverage, high update frequency, and good availability. This paper proposes an intelligent evaluation method for urban built environments based on scene understanding of high-resolution remote-sensing images. It contributes not only the assessment criteria for the built environment in remote-sensing images from the perspective of visual cognition but also an image-caption dataset applicable to urban-built-environment assessment. The results show that the proposed deep-learning-driven method can provide a feasible paradigm for representing high-resolution remote-sensing image scenes and large-scale urban-built-area assessment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Central South University Research Programme of Advanced Interdisciplinary Studies

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3