Interactive Change-Aware Transformer Network for Remote Sensing Image Change Captioning

Author:

Cai Chen1ORCID,Wang Yi2ORCID,Yap Kim-Hui1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

2. Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong

Abstract

Remote sensing image change captioning (RSICC) aims to automatically generate sentences describing the difference in content in remote sensing bitemporal images. Recent works extract the changes between bitemporal features and employ a hierarchical approach to fuse multiple changes of interest, yielding change captions. However, these methods directly aggregate all features, potentially incorporating non-change-focused information from each encoder layer into the change caption decoder, adversely affecting the performance of change captioning. To address this problem, we proposed an Interactive Change-Aware Transformer Network (ICT-Net). ICT-Net is able to extract and incorporate the most critical changes of interest in each encoder layer to improve change description generation. It initially extracts bitemporal visual features from the CNN backbone and employs an Interactive Change-Aware Encoder (ICE) to capture the crucial difference between these features. Specifically, the ICE captures the most change-aware discriminative information between the paired bitemporal features interactively through difference and content attention encoding. A Multi-Layer Adaptive Fusion (MAF) module is proposed to adaptively aggregate the relevant change-aware features in the ICE layers while minimizing the impact of irrelevant visual features. Moreover, we extend the ICE to extract multi-scale changes and introduce a novel Cross Gated-Attention (CGA) module into the change caption decoder to select essential discriminative multi-scale features to improve the change captioning performance. We evaluate our method on two RSICC datasets (e.g., LEVIR-CC and LEVIRCCD), and the experimental results demonstrate that our method achieves a state-of-the-art performance.

Funder

The Hong Kong Polytechnic University (PolyU) Start-up Fund for RAPs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3