Modeling Historical and Future Forest Fires in South Korea: The FLAM Optimization Approach

Author:

Jo Hyun-Woo12ORCID,Krasovskiy Andrey2ORCID,Hong Mina3ORCID,Corning Shelby2,Kim Whijin1ORCID,Kraxner Florian2ORCID,Lee Woo-Kyun1ORCID

Affiliation:

1. Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea

2. Agriculture Forestry and Ecosystem Services (AFE) Group, Biodiversity and Natural Resources (BNR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria

3. OJEong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea

Abstract

Climate change-induced heat waves increase the global risk of forest fires, intensifying biomass burning and accelerating climate change in a vicious cycle. This presents a challenge to the response system in heavily forested South Korea, increasing the risk of more frequent and large-scale fire outbreaks. This study aims to optimize IIASA’s wildFire cLimate impacts and Adaptation Model (FLAM)—a processed-based model integrating biophysical and human impacts—to South Korea for projecting the pattern and scale of future forest fires. The developments performed in this study include: (1) the optimization of probability algorithms in FLAM based on the national GIS data downscaled to 1 km2 with additional factors introduced for national specific modeling; (2) the improvement of soil moisture computation by adjusting the Fine Fuel Moisture Code (FFMC) to represent vegetation feedbacks by fitting soil moisture to daily remote sensing data; and (3) projection of future forest fire frequency and burned area. Our results show that optimization has considerably improved the modeling of seasonal patterns of forest fire frequency. Pearson’s correlation coefficient between monthly predictions and observations from national statistics over 2016–2022 was improved from 0.171 in the non-optimized to 0.893 in the optimized FLAM. These findings imply that FLAM’s main algorithms for interpreting biophysical and human impacts on forest fire at a global scale are only applicable to South Korea after the optimization of all modules, and climate change is the main driver of the recent increases in forest fires. Projections for forest fire were produced for four periods until 2100 based on the forest management plan, which included three management scenarios (current, ideal, and overprotection). Ideal management led to a reduction of 60–70% of both fire frequency and burned area compared to the overprotection scenario. This study should be followed by research for developing adaptation strategies corresponding to the projected risks of future forest fires.

Funder

Korea Forest Service

Climate and Energy Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3