Can Ensemble Techniques and Large-Scale Fire Datasets Improve Predictions of Forest Fire Probability Due to Climate Change?—A Case Study from the Republic of Korea

Author:

Ahn Hyeon Kwon12ORCID,Jung Huicheul3ORCID,Lim Chul-Hee14

Affiliation:

1. Department of Forestry, Environment, and Systems, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul 02707, Republic of Korea

2. Department of Forest Resources, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul 02707, Republic of Korea

3. Korea Adaptation Center for Climate Change, Korea Environment Institute, Sejong 30147, Republic of Korea

4. College of General Education, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul 02707, Republic of Korea

Abstract

The frequency of forest fires worldwide has increased recently due to climate change, leading to severe and widespread damage. In this study, we investigate potential changes in the fire susceptibility of areas in South Korea arising from climate change. We constructed a dataset of large-scale forest fires from the past decade and employed it in machine learning models that integrate climatic, socioeconomic, and environmental variables to assess the risk of forest fires. According to the results of these models, the eastern region is identified as highly vulnerable to forest fires during the baseline period, while the western region is classified as relatively safe. However, in the future, certain areas along the western coast are predicted to become more susceptible to forest fires. Consequently, as climate change continues, the risk of domestic forest fires is expected to increase, leading to the need for proactive prevention measures and careful management. This study contributes to the understanding of forest fire occurrences under diverse climate scenarios.

Funder

Forest vulnerability to climate change

Korea Environment Institute

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3