Evaluating Carbon Sink Potential of Forest Ecosystems under Different Climate Change Scenarios in Yunnan, Southwest China

Author:

Lü Fucheng1ORCID,Song Yunkun1,Yan Xiaodong1ORCID

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

Nature-based Solutions (NbS) can undoubtedly play a significant role in carbon neutrality strategy. Forests are a major part of the carbon budget in terrestrial ecosystems. The possible response of the carbon balance of southwestern forests to different climate change scenarios was investigated through a series of simulations using the forest ecosystem carbon budget model for China (FORCCHN), which clearly represents the influence of climate factors on forest carbon sequestration. Driven by downscaled global climate model (GCM) data, the FORCCHN evaluates the carbon sink potential of southwestern forest ecosystems under different shared socioeconomic pathways (SSPs). The results indicate that, first, gross primary productivity (GPP), ecosystem respiration (ER) and net primary productivity (NPP) of forest ecosystems are expected to increase from 2020 to 2060. Forest ecosystems will maintain a carbon sink, but net ecosystem productivity (NEP) will peak and begin to decline in the 2030s. Second, not only is the NEP in the SSP1-2.6 scenario higher than in the other climate change scenarios for 2025–2035 and 2043–2058, but the coefficient of variation of the NEP is also narrower than in the other scenarios. Third, in terms of spatial distribution, the carbon sequestration potential of northwest and central Yunnan is significantly higher than that of other regions, with a slight upward trend in NEP in the future. Finally, GPP and ER are significantly positively correlated with temperature and insignificantly correlated with precipitation, and the increasing temperature will have a negative and unstable impact on forest carbon sinks. This study provides a scientific reference for implementing forest management strategies and achieving sustainable development.

Funder

State Key Laboratory of Earth Surface Processes and Resource Ecology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3