Scanning Electron Microscopy Analysis and Energy Dispersion X-ray Microanalysis to Evaluate the Effects of Decontamination Chemicals and Heat Sterilization on Implant Surgical Drills: Zirconia vs. Steel

Author:

Scarano AntonioORCID,Noumbissi SammyORCID,Gupta Saurabh,Inchingolo Francesco,Stilla Pierbiagio,Lorusso FeliceORCID

Abstract

Background: Drills are an indispensable tool for dental implant surgery. Today, there are ceramic zirconium dioxide and metal alloy drills available. Osteotomy drills are critical instruments since they come in contact with blood and saliva. Furthermore, they are reusable and should be cleaned and sterilized between uses. Depending on the material, sterilizing agents and protocols can alter the surface and sharpness of implant drills. The hypothesis is that cleaning and sterilization procedures can affect the surface structure of the drills and consequently reduce their cutting efficiency. Methods: Eighteen zirconia ceramic drills and eighteen metal alloy drills were evaluated. Within the scope of this study, the drills were not used to prepare implant sites. They were immersed for 10 min in human blood taken from volunteer subjects and then separately exposed to 50 cycles of cleansing with 6% hydrogen peroxide, cold sterilization with glutaraldehyde 2%, and autoclave heat sterilization. Scanning Electron Microscopy (SEM) and energy dispersion X-ray (EDX) microanalysis were conducted before and after each cycle and was used to evaluate the drill surfaces for alterations. Results: After exposure to the cleansing agents used in this study, alterations were seen in the steel drills compared to zirconia. Conclusions: The chemical sterilization products used in this study cause corrosion of the metal drills and reduce their sharpness. It was observed that the cycles of steam sterilization did not affect any of the drills. Zirconia drill surfaces remained stable.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3