Mechanical Behaviour and Primary Stability of a Self-Condensing Implant: A Laboratory Critical Simulation of a Severe Maxillary Atrophy on Polyurethane Lamina

Author:

Comuzzi Luca,Iezzi Giovanna,Lucchese AlessandraORCID,Di Pietro NataliaORCID,Balice Pierluigi,D’Arcangelo Camillo,Piattelli Adriano,Tumedei MargheritaORCID

Abstract

Background: Posterior maxillary atrophies could emerge after the loss of teeth, trauma, infections, or lesions that often require regenerative approaches. In these critical conditions, the achievement of implant primary stability represents a clinical challenge in the operative practice. Therefore, a two-stage approach is often preferred with a delay of the rehabilitation time and a consistent increasing of the biological and the operative costs. The aim of this study was to evaluate the mechanical behaviour of a self-condenser implant compared to a standard implant in a critical simulation on different thicknesses and densities of polyurethane lamina. Materials and methods: A total of two implant models were tested: a self-condensing device (test) and a standard implant (control). The study evaluated the insertion torque and the pull-out strength values of the test and control implants inserted in different sizes (1, 2, and 3 mm) and density polyurethane lamina (10, 20, and 30 pcf) for a total of 320 experimental sites. Results: In total, 320 experimental sites were produced in the polyurethane samples. A statistically significant difference of insertion and pull-out torque values between the test and control Implants was found in the different bone densities (p < 0.05). The insertion and pull-out torque values were always higher for the test implants in all experimental conditions. In all bone densities, the insertion torque values were higher than the pull-out torque values. The self-condenser dental implant design evaluated in this in vitro study showed a high level of stability in all experimental conditions. Conclusions: The test implant could represent a useful tool for a one-stage surgical approach in the presence of limited residual native bone as an alternative to a delayed technique.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3