Study on the Flow Boiling Heat Transfer Characteristics of the Liquid Film in a Rotating Pipe

Author:

Lian WenleiORCID,Zhu YuORCID,Sun Zijian

Abstract

A three-dimensional numerical model is established to study the flow boiling heat transfer characteristics of the liquid film in a rotating pipe, and the effectiveness of the model is verified by a comparison between the numerical results and the experimental results. The effects of rotational speed, heat flux, and Coriolis force on the characteristics of heat transfer of the rotating liquid film are investigated. The conclusions are drawn as follows: (1) The convection of the rotating liquid film is enhanced while the nucleate boiling in the rotating liquid film is inhibited by the increase in the rotational speed; (2) With the influence of these two factors, the heat transfer coefficient increases with centrifugal acceleration increasing from 20 g to 40 g, then decreases with centrifugal acceleration increasing from 40 g to 120 g; (3) The turbulent intensity of the flow with Coriolis force is obviously increased compared to that without Coriolis force when the centrifugal acceleration ranges from 20 g to 80 g, which shows no increase at higher centrifugal accelerations when the turbulence is sufficiently strong. The Coriolis force also has an impact on the heat transfer coefficient of the liquid film, which should not be ignored when studying the boiling heat transfer of a rotating liquid film.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. The Rotating Heat Pipe-A Wickless, Hollow Shaft for Transferring High Heat Fluxes;Gray,1969

2. Test results of a high speed rotating heat pipe;Ponnappan;Proceedings of the 32nd Thermophysics Conference,1997

3. Study of a Hybrid of Pulsating Heat Pipe and Distributed Jet Array;Li;J. Thermophys. Heat Transf.,2020

4. CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications;Brahim;Int. J. Therm. Sci.,2021

5. Experimental study on heat transfer performance of dual-source heat pipe air conditioning system and application;Huang;Transducer Microsyst. Technol.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3