Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature

Author:

Zhao Yuan,Gao Chenghao,Li Chengjun,Sun Jie,Wang Chunyan,Liu QiangORCID,Zhao Jun

Abstract

The organic Rankine cycles (ORCs) have been used to convert low-enthalpy geothermal brine into power. Parameter optimization and working fluid selection are the main approaches to enhance geothermal ORC performance. This work uses environmentally friendly fluids, including R1224yd(Z), R1233zd(E), R1336mzz(Z), R601 and R601a, as the geothermal ORC working fluids. The evaporation temperatures of the selected fluids were optimized to maximize the cycle net power outputs. The thermodynamic characteristics are investigated with the consideration of the influence of the allowed reinjection temperature (ARIT). Among the selected fluids, R1224yd(Z) has the highest optimal evaporation temperature with the maximum turbine power output for a brine inlet temperature (BIT) higher than 120 °C, especially at a lower allowed reinjection temperature. However, the parasitic power consumption by the pumps in an ORC with R1224yd(Z) is also higher than with the other four fluids. The net power output for ORC with R1336mzz(Z) is slightly more than that with R1224yd(Z). Although the optimal evaporation temperature for a RORC is lower than that for an ORC, the higher preheater inlet temperature leads to a higher geothermal heating exergy efficiency and more power output for a BIT less than 120 °C. The RORC with R1336mzz(Z) produces 2.6% more net power than an ORC for a brine inlet temperature of 100 °C. As the ARIT increases from 70 °C to 75 °C, the plant exergy efficiencies of ORCs are decreased by 6–8% for a geothermal brine inlet temperature of 100 °C.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3